Mlulumath

What Can Real Life Do to Restrict Domain and Range?
 Video Notes

Video Link

What Can Real Life Do to Restrict Domain and Range?

Background Knowledge:

- Domain and range
- Key features of quadratic relations - roots and vertices

While standing on top of a building, Claire threw a ball in the air. The height of the ball, y, in meters, is represented by the equation $y=-4.9 x^{2}+19.6 x+18$, where x represents the time in seconds.

What are the domain and range of this scenario?

* Let's find the root.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=-4.9 x^{2}+19.6 x+18 \\
& \text { - factoring } \\
& \text { - completing the square } \\
& \text { - quadratic formula. } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=-4.9 \\
& b=19.6 \\
& c=\overline{18} \\
& x=\frac{-19.6 \pm \sqrt{(19.6)^{2}-4(-4.9)(18)}}{2(-4.9)} \\
& x=\frac{-19,6 \pm \sqrt{736.96}}{-9.8} \downarrow \\
& x=\frac{-19.6+\sqrt{736.96}}{-9.8} \text { OR } x=\frac{-19.6-\sqrt{730} .96}{-9.8} \\
& x \doteq-0.77 \quad \text { OR } \quad x \doteq 4.77
\end{aligned}
$$

* Find vertex

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-19.6}{2(-4.9)}=\frac{-19.6}{-9.8}=2 \\
& y=-4.9 x^{2}+19.6 x+18 \\
& y=-4.9(2)^{2}+19.6(2)+18 \\
& y=-4.9(4)+19.6(2)+18 \\
& y=-19.6+39.2+18 \\
& y=37.6
\end{aligned}
$$

