Mlulumath

Solving Systems of Equations by Substitution (Part 2)
 (Video Notes)

Video Link

Solving Systems of Equations by
Substitution (Part 2)

Solve the following system of equations by substitution.

$$
\begin{aligned}
& 4 x-3 y=26 \\
& x+5 y=-5
\end{aligned}
$$

1. Isolate a variable.
any variable in any equation
get alone

$$
\begin{aligned}
x+5 y & =-5 . \\
-5 y & -5 y \\
x & =-5-5 y
\end{aligned}
$$

2. Substitute the new equivalent expression into the other equation in the system.

3. Now that I have a unique variable, I can solve!

$$
\begin{aligned}
4(-5-5 y)-3 y & =26 \\
-20-20 y-3 y & =26 \\
-26-23 y & =26 \\
+20 & +20 \\
\frac{23 y}{-23} & =\frac{46}{-23} \\
y & =-2
\end{aligned}
$$

4. Solve for the missing variable.

Solution:

$$
(5,-2)
$$

$$
-\begin{aligned}
3 y+5 x & =-41 \\
12 x-6 y & =-6
\end{aligned}
$$

1. Isolate a variable.

$$
\begin{gathered}
+122 x \in 6 y=-6 \\
-12 x-12 x \\
\hline \frac{-6 a y}{-6}=\frac{-6}{-6}-\frac{12 x}{-6} \\
y=1+2 x
\end{gathered}
$$

2. Substitute the new equivalent expression into the other equation in the system.

3. Now that I have a unique variable, I can solve!

$$
3(1+2 \underline{x})+5 \underline{x}=-41
$$

 $3+6 x+5 x=-41$

4. Solve for the missing variable.

$$
y=?
$$

Solution:
$3 y+5 x=-41$

$$
(-4,-7)
$$

